题目连接:
Description
Recently Maxim has found an array of n integers, needed by no one. He immediately come up with idea of changing it: he invented positive integer x and decided to add or subtract it from arbitrary array elements. Formally, by applying single operation Maxim chooses integer i (1 ≤ i ≤ n) and replaces the i-th element of array ai either with ai + x or with ai - x. Please note that the operation may be applied more than once to the same position.
Maxim is a curious minimalis, thus he wants to know what is the minimum value that the product of all array elements (i.e. ) can reach, if Maxim would apply no more than k operations to it. Please help him in that.
Input
The first line of the input contains three integers n, k and x (1 ≤ n, k ≤ 200 000, 1 ≤ x ≤ 109) — the number of elements in the array, the maximum number of operations and the number invented by Maxim, respectively.
The second line contains n integers a1, a2, ..., an () — the elements of the array found by Maxim.
Output
Print n integers b1, b2, ..., bn in the only line — the array elements after applying no more than k operations to the array. In particular, should stay true for every 1 ≤ i ≤ n, but the product of all array elements should be minimum possible.
If there are multiple answers, print any of them.
Sample Input
5 3 1
5 4 3 5 2Sample Output
5 4 3 5 -1
Hint
题意
给你n个数,你可以操作k次,每次使得一个数增加x或者减小x
你要使得最后所有数的乘积最小,问你最后这个序列长什么样子。
题解:
贪心,根据符号的不同,每次贪心的使得一个绝对值最小的数减去x或者加上x就好了
这个贪心比较显然。
假设当前乘积为ANS,那么你改变a[i]的大小的话,那么对答案的影响为ANS/A[i]/*X
然后找到影响最大的就好了。
代码
#includeusing namespace std;const int maxn = 2e5+7;long long a[maxn],b[maxn];int n,k,x;set >S;int main(){ scanf("%d%d%d",&n,&k,&x); int sig = 0; for(int i=1;i<=n;i++) { scanf("%lld",&a[i]); if(a[i]<0)sig^=1; S.insert(make_pair(abs(a[i]),i)); } for(int i=1;i<=k;i++) { int pos = S.begin()->second; S.erase(S.begin()); if(a[pos]<0)sig^=1; if(sig)a[pos]+=x; else a[pos]-=x; if(a[pos]<0)sig^=1; S.insert(make_pair(abs(a[pos]),pos)); } for(int i=1;i<=n;i++) cout< <<" "; cout<